Telegram Group & Telegram Channel
🧩 Задача для продвинутых дата-сайентистов: "Парадоксальная корреляция"

📖 Описание задачи

У вас есть DataFrame df с данными о рекламных кампаниях:


import pandas as pd

data = {
'campaign_id': [1, 2, 3, 4, 5, 6],
'spend': [1000, 1500, 1200, None, 2000, 1700],
'revenue': [2000, 2300, 2500, 1800, None, 2700]
}

df = pd.DataFrame(data)
print(df)


Результат:


campaign_id spend revenue
0 1 1000.0 2000.0
1 2 1500.0 2300.0
2 3 1200.0 2500.0
3 4 NaN 1800.0
4 5 2000.0 NaN
5 6 1700.0 2700.0


Вам нужно посчитать корреляцию между spend и revenue.

Вы пишете:


correlation = df['spend'].corr(df['revenue'])
print(correlation)


И получаете:


nan


❗️Но вы уверены, что данные связаны (чем больше spend, тем больше revenue), а Pandas возвращает NaN.

📝 Ваша задача:

1. Почему Pandas возвращает NaN?
2. Как правильно посчитать корреляцию?
3. Как бы вы обработали такие данные в продакшн-пайплайне?

---

🎯 Подвох (ключевой момент):

Метод corr() автоматически игнорирует строки, где хотя бы одно значение NaN.

В этом DataFrame остаются только строки с индексами 0, 1, 2, 5.
→ На этих данных корреляция может быть рассчитана.

Но главная проблема — тип данных.

Если данные были считаны, например, из CSV, где пустые значения остались строками, то Pandas определит колонку как object, а не float64:


print(df.dtypes)


Вывод:


spend object
revenue object


И тогда corr() вернёт NaN, потому что не смог интерпретировать данные как числовые.

---

💡 Решение:

1. Проверить типы данных:

```python
print(df.dtypes)
```

2. Привести к числовому типу:

```python
df['spend'] = pd.to_numeric(df['spend'], errors='coerce')
df['revenue'] = pd.to_numeric(df['revenue'], errors='coerce')
```

3. Посчитать корреляцию без NaN:

```python
correlation = df[['spend', 'revenue']].dropna().corr().iloc[0, 1]
print(correlation)
```

Теперь корреляция рассчитана корректно.

---

🔥 Дополнительный подвох:

А что если CSV-файл считан с
delimiter=';', а данные внутри разделены запятыми?
→ Тогда весь DataFrame будет одной колонкой с типом object, а Pandas не сможет даже начать обработку.

---

📝 Что проверяет задача:

Понимание, как Pandas обрабатывает NaN и object
Внимательность к типам данных
Умение находить ошибки при чтении и парсинге данных
Опыт очистки и предобработки грязных данных

🔥 Отличная проверка на внимательность и глубину работы с Pandas!



tg-me.com/machinelearning_interview/1787
Create:
Last Update:

🧩 Задача для продвинутых дата-сайентистов: "Парадоксальная корреляция"

📖 Описание задачи

У вас есть DataFrame df с данными о рекламных кампаниях:


import pandas as pd

data = {
'campaign_id': [1, 2, 3, 4, 5, 6],
'spend': [1000, 1500, 1200, None, 2000, 1700],
'revenue': [2000, 2300, 2500, 1800, None, 2700]
}

df = pd.DataFrame(data)
print(df)


Результат:


campaign_id spend revenue
0 1 1000.0 2000.0
1 2 1500.0 2300.0
2 3 1200.0 2500.0
3 4 NaN 1800.0
4 5 2000.0 NaN
5 6 1700.0 2700.0


Вам нужно посчитать корреляцию между spend и revenue.

Вы пишете:


correlation = df['spend'].corr(df['revenue'])
print(correlation)


И получаете:


nan


❗️Но вы уверены, что данные связаны (чем больше spend, тем больше revenue), а Pandas возвращает NaN.

📝 Ваша задача:

1. Почему Pandas возвращает NaN?
2. Как правильно посчитать корреляцию?
3. Как бы вы обработали такие данные в продакшн-пайплайне?

---

🎯 Подвох (ключевой момент):

Метод corr() автоматически игнорирует строки, где хотя бы одно значение NaN.

В этом DataFrame остаются только строки с индексами 0, 1, 2, 5.
→ На этих данных корреляция может быть рассчитана.

Но главная проблема — тип данных.

Если данные были считаны, например, из CSV, где пустые значения остались строками, то Pandas определит колонку как object, а не float64:


print(df.dtypes)


Вывод:


spend object
revenue object


И тогда corr() вернёт NaN, потому что не смог интерпретировать данные как числовые.

---

💡 Решение:

1. Проверить типы данных:

```python
print(df.dtypes)
```

2. Привести к числовому типу:

```python
df['spend'] = pd.to_numeric(df['spend'], errors='coerce')
df['revenue'] = pd.to_numeric(df['revenue'], errors='coerce')
```

3. Посчитать корреляцию без NaN:

```python
correlation = df[['spend', 'revenue']].dropna().corr().iloc[0, 1]
print(correlation)
```

Теперь корреляция рассчитана корректно.

---

🔥 Дополнительный подвох:

А что если CSV-файл считан с
delimiter=';', а данные внутри разделены запятыми?
→ Тогда весь DataFrame будет одной колонкой с типом object, а Pandas не сможет даже начать обработку.

---

📝 Что проверяет задача:

Понимание, как Pandas обрабатывает NaN и object
Внимательность к типам данных
Умение находить ошибки при чтении и парсинге данных
Опыт очистки и предобработки грязных данных

🔥 Отличная проверка на внимательность и глубину работы с Pandas!

BY Machine learning Interview


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/machinelearning_interview/1787

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Should I buy bitcoin?

“To the extent it is used I fear it’s often for illicit finance. It’s an extremely inefficient way of conducting transactions, and the amount of energy that’s consumed in processing those transactions is staggering,” the former Fed chairwoman said. Yellen’s comments have been cited as a reason for bitcoin’s recent losses. However, Yellen’s assessment of bitcoin as a inefficient medium of exchange is an important point and one that has already been raised in the past by bitcoin bulls. Using a volatile asset in exchange for goods and services makes little sense if the asset can tumble 10% in a day, or surge 80% over the course of a two months as bitcoin has done in 2021, critics argue. To put a finer point on it, over the past 12 months bitcoin has registered 8 corrections, defined as a decline from a recent peak of at least 10% but not more than 20%, and two bear markets, which are defined as falls of 20% or more, according to Dow Jones Market Data.

Machine learning Interview from ms


Telegram Machine learning Interview
FROM USA